A 13T CMOS Memory Cell for Multiple Node Upset Hardening at 32nm
نویسندگان
چکیده
The occurrence of a multiple node upset is likely to increase significantly in nanoscale CMOS due to reduced device size and power supply voltage scaling. This paper presents a comprehensive treatment (model, analysis and design) for hardening a memory cell against a soft error resulting in a multiple node upset at 32nm feature size in CMOS. A novel 13T memory cell configuration is proposed, analyzed, and simulated to show a better tolerance to the likely multiple node upset, i.e. a transient or soft fault affecting two nodes in a cell. The proposed hardened memory cell utilizes a Schmitt trigger design; simulation shows that the multiple node upset tolerance is improved by nearly twice as much over existing designs. Moreover the 13T cell achieves a 33% reduction in write delay and only a 5% increase in power consumption compared to the DICE cell (consisting of 12 transistors). Simulation results are provided using the predictive technology file for 32nm feature size in CMOS. Monte Carlo simulation confirms the excellent multiple node upset tolerance of the proposed memory cell in the presence of process, voltage, and temperature variations in their designs.
منابع مشابه
Radiation-hardened MRAM-based LUT for non-volatile FPGA soft error mitigation with multi-node upset tolerance
In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall Effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid CMOS/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models develop...
متن کاملSingle Event Mirroring and DRAM Sense Amplifier Designs for Improved Single-Event- Upset Performance
This paper proposes and investigates schemes for hardening the conventional CMOS cross-coupled DRAM sense amplifier to single event upset (SEU). These schemes, adapted from existing SRAM hardening techniques, are intended to harden the dynamic random access memory to bitline-mode errors during the sensing period. Simulation results indicate that a 9kΩ L-resistor hardening scheme provides greate...
متن کاملA Novel circuit of SRAM Cell Against Single-Event Multiple Effects for 45nm Technology
As CMOS technology down sized into double digit nanometer ranges, variations are a serious concern due to uncertainty in devices and interconnect characteristics. The single event upset (SEU) is changing the state of a memory cell due to the strike of an energetic particle. The single event multiple effects are likely to increase in nanometer CMOS technology due to reduced device size and scali...
متن کاملA New Low Power 9T SRAM Cell based on CNTFET at 32nm Technology Node
Abstarct---This paper proposes a new design of highly stable and low power SRAM cell using carbon nanotube FETs (CNTFETs) at 32nm technology node. As device physical gate length is reduced to below 65 nm, device non-idealities such as large parameter variations and exponential increase in leakage current make the I-V characteristics substantially different from traditional MOSFETs and become a ...
متن کاملSingle event multiple upset-tolerant SRAM cell designs for nano-scale CMOS technology
In this article, two soft error tolerant SRAM cells, the so-called RATF1 and RATF2, are proposed and evaluated. The proposed radiation hardened SRAM cells are capable of fully tolerating single event upsets (SEUs). Moreover, they show a high degree of robustness against single event multiple upsets (SEMUs). Over the previous SRAM cells, RATF1 and RATF2 offer lower area and power overhead. The H...
متن کامل